If A + B + C = 0, then prove that
Given: A + B + C = 0
To Prove:
Taking LHS,
Expanding along the first row, we get
= [1{1 – cos2A} – cos C {cos C – cos B cos A} + cos B {cos C cos A – cos B}]
= {1 – cos2A} – {cos2C – cos A cos B cos C} + {cos A cos B cos C – cos2B}
= {sin2A} – cos2C + cos A cos B cos C + cos A cos B cos C – cos2B
[∵ cos2x + sin2x = 1]
= sin2A – cos2C – cos2B + 2cos A cos B cos C
= -(cos2B – sin2A)– cos2C + 2cos A cos B cos C
= -[cos(B + A)cos(B – A)] + cos C [2 cos A cos B – cos C]
[∵ cos2B – sin2A = cos(B + A)cos(B – A)]
= -[cos(B + A)cos(B – A)] + cos C [cos(A + B) + cos(A – B) – cos C]…(i)
[∵ 2cos A cos B = cos(A + B) + cos(A – B)]
It is given that A + B + C = 0
⇒ A + B = - C
Putting the value of A + B in eq (i), we get
= -[cos(- C) cos(B – A)] + cos C [cos(-C) + cos (A – B) – cos C]
= -cos C cos(B – A) + cos C[cos C + cos(A – B) – cos C]
[∵ cos(-C) = cos C]
Now, cos(A – B) = cos A cos B + sin A sin B
= -cos C{cos B cos A + sin B sin A} + cos C [cos A cos B + sin A sin B]
= 0 = RHS
Hence Proved