Show that the Δ ABC is an isosceles triangle if the determinant
We have,
Applying C2→ C2 – C1, we get
Taking common cos B – cos A from second column, we get
Applying C3→ C3 – C1, we get
⇒
Taking common cos C – cos A from column third, we get
Now, expanding along first row, we get
⇒ (cos B – cos A)(cos C – cos A)[(1){cos C + cos A + 1 – (cos B + cos A + 1)}] = 0
⇒ (cos B – cos A)(cos C – cos A)[cos C + cos A + 1 – cos B – cos A – 1] = 0
⇒ (cos B – cos A)(cos C – cos A)(cos C – cos B) = 0
⇒ cos B – cos A = 0 or cos C – cos A = 0 or cos C – cos B = 0
⇒ cos B = cos A or cos C = cos A or cos C = cos B
⇒ B = A or C = A or C = B
Hence, ΔABC is an isosceles triangle.