If A, B and C are angles of a triangle, then the determinant is equal to
We have,
Expanding along C1, we get
= [(-1){1 – cos2A} – cos C{-cos C – cos Acos B} + cos B{cos A cos C + cos B}]
= -1 + cos2A + cos2C + cos A cos B cos C + cos A cos B cos C + cos2B
= -1 + cos2A + cos2B + cos2C + 2cos A cos B cos C
Here, we use formula
1 + cos2A = 2cos2A
Taking L.C.M, we get
Now, we use the formula:
cos(A + B) cos(A – B) = 2cos Acos B
so, cos2A + cos2B = 2 cos(A + B) cos(A – B)
…(i)
Since, A, B and C are the angles of a triangle and we know that the sum of the angles of a triangle = 180° or π
⇒ A + B + C = π
⇒ A + B = π – C
Putting the value of (A+B) in eq. (i), we get
[∵ cos(π – x) = -cos X]
= -cos C{cos(A – B) – cos C} + 2cos Acos Bcos C
= -cos C[cos(A – B) – cos{π – (A + B)}] + 2cos Acos Bcos C
= -cos C[cos(A – B) + cos(A + B)] + + 2cos Acos Bcos C
= -cos C[2cos Acos B] + 2cos Acos Bcos C
= 0