If A and B are invertible matrices, then which of the following is not correct?
Given A and B are invertible matrices.
Consider (AB) B-1 A-1
⇒ (AB) B-1 A-1 = A(BB-1) A-1
= AIA-1 = (AI) A-1
= AA-1 = I
⇒ (AB)-1 = B-1 A-1 … option (C)
Also AA-1 = I
⇒ |AA-1| = |I|
⇒ |A| |A-1| = 1
∴ det (A)-1 = [det (A)]-1 … (B)
We know that
⇒ adj A = |A|. A-1 … option (A)
But
∴ (A + B)-1 ≠ B-1 + A-1
Hence, option (D) is not correct.