If A = {a, b, c, d, e}, B = {a, c, e, g}, and C = {b, e, f, g} verify that:
(i) A ∩ (B – C) = (A ∩ B) – (A ∩ C)
(ii) A – (B ∩ C) = (A – B) ∪ (A – C)
(i) B - C represents all elements in B that are not in C
B - C = {a, c}
A(B - C) = {a, c}
AB = {a, c, e}
AC = {b, e}
(AB) - (A
C) = {a, c}
A
(B - C) = (A
B) - (A
C)
Hence proved
(ii) BC = {e, g}
A - (BC) = {a, b, c, d}
(A - B) = {b, d}
(A - C) = {a, c, d}
(A - B) (A - C) = {a, b, c, d}
A - (B
C) = (A - B)
(A - C)
Hence proved