If A = {x : x ϵ N, x ≤ 7}, B = {x : x is prime, x < 8} and C = {x : x ϵ N, x is odd and x < 10}, verify that:
(i) A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)
(ii) A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)
Natural numbers start from 1
A = {1, 2, 3, 4, 5, 6, 7}
B = {2, 3, 5, 7}
C = {1, 3, 5, 7, 9}
(i) BC = {3, 5, 7}
AU(BC) = {1, 2, 3, 4, 5, 6, 7}
AB = {1, 2, 3, 4, 5, 6, 7}
AC = {1, 2, 3, 4, 5, 6, 7, 9}
(AB)
(A
C) = {1, 23, 4, 5, 6, 7}
A
(B
C) = (A
B)
(A
C)
Hence proved
(ii) BC = {1, 2, 3, 5, 7, 9}
A(B
C) = {1, 2, 3, 5, 7}
AB = {2, 3, 5, 7}
AC = {1, 3, 5, 7}
(AB)
(A
C) = {1, 2, 3, 5, 7}
A
(B
C) = (A
B)
(A
C)
Hence proved