Find the domain and range of each of the relations given below:
(i) R = {(–1, 1), (1, 1), (–2, 4), (2, 4), (2, 4), (3, 9)}
(iii) R ={(x, y) : x + 2y = 8 and x, y ϵ N}
(iv) R = {(x, y), : y = |x – 1|, x ϵ Z and |x| ≤ 3}
(i) Given: R = {(–1, 1), (1, 1), (–2, 4), (2, 4), (2, 4), (3, 9)}
Dom(R) = {x: (x, y) R} = {-2, -1, 1, 2, 3}
Range(R) = {y: (x, y) R} = {1, 4, 9}
(ii) Given:
That means,
Dom(R) = {x: (x, y) R} = {1, 2, 3, 4}
Range(R) = {y: (x, y) R} = {1,
,
,
}
(iii) Given: R = {(x, y): x + 2y = 8 and x, y ϵ N}
That means, R = {(2, 3), (4, 2), (6, 1)}
Dom(R) = {x: (x, y) R} = {2, 4, 6}
Range(R) = {y: (x, y) R} = {1, 2, 3}
(iv) Given: R = {(x, y): y = |x – 1|, x ϵ Z and |x| ≤ 3}
Dom(R) = {x: (x, y) R} = {-3, -2, -1, 0, 1, 2, 3}
Range(R) = {y: (x, y) R} = {0, 1, 2, 3, 4}