If find the value of a and b such that A2 + aA + bI = O.


Given : A2 + aA + bI = O


A is a matrix of order 2 x 2


To find : a and b


Formula used :



Where cij = ai1b1j + ai2b2j + ai3b3j + ……………… + ainbnj


If A is a matrix of order a b and B is a matrix of order c d ,then matrix AB exists and is of order a d ,if and only if b = c


A2 is a matrix of order 2 x 2


A2 = = =


A2 =


aA = a =


bI = b =


bI =


A2 + aA + bI = + + =


A2 + aA + bI =


It is given that A2 + aA + bI = 0


=


Equating similar terms in the matrices,we get


4 + a = 0 and 3 + a + b = 0


a = 0 – 4 = -4


a = -4


substituting a = -4 in 3 + a + b = 0


3 – 4 + b = 0


-1 + b = 0


b = 0 + 1 = 1


b = 1


a = -4 and b = 1


1
1