If
, then for any natural number, find the value of Det(An).
We are given that,
![]()
We need to find the det(An).
To find det(An),
First we need to find An, and then take determinant of An.
Let us find A2.
A2 = A.A
![]()
Let,
![]()
For z11: Dot multiply the first row of the first matrix and first column of the second matrix, then sum up.
That is,
(cos θ, sin θ).(cos θ, -sin θ) = cos θ × cos θ + sin θ × (-sin θ)
⇒ (cos θ, sin θ).(cos θ, -sin θ) = cos2 θ – sin2 θ
By algebraic identity,
cos 2θ = cos2 θ – sin2 θ
⇒ (cos θ, sin θ).(cos θ, -sin θ) = cos 2θ
![]()
For z12: Dot multiply the first row of the first matrix and second column of the second matrix, then sum up.
That is,
(cos θ, sin θ)(sin θ, cos θ) = cos θ × sin θ + sin θ × cos θ
⇒ (cos θ, sin θ)(sin θ, cos θ) = sin θ cos θ + sin θ cos θ
⇒ (cos θ, sin θ)(sin θ, cos θ) = 2 sin θ cos θ
By algebraic identity,
sin 2θ = 2 sin θ cos θ
⇒ (cos θ, sin θ)(sin θ, cos θ) = sin 2θ
![]()
Similarly,


![]()
![]()
![]()
If
and
, then
![]()
Now, taking determinant of An,
![]()
Determinant of 2 × 2 matrix is found as,
![]()
So,
Det(An) = cos nθ × cos nθ – sin nθ × (-sin nθ)
⇒ Det(An) = cos2 nθ + sin2 nθ
Using the algebraic identity,
sin2 A + cos2 A = 1
⇒ Det(An) = 1
Thus, Det(An) is 1.