If a vector makes angles α, β, γ with OX, OY and OZ respectively, then write the value of sin2α + sin2β + sin2γ.


The sum of squares of direction cosines of a vector is 1.

Let the angles made by vector be α, β, γ. Then, we get


cos2α+cos2β+cos2γ=1


using cos2θ=1-sin2θ, we get


(1-sin2α) +(1-sin2β) +(1-sin2γ) =1


Or, sin2α+sin2β+sin2γ=2


1
1