If a vector makes angles α, β, γ with OX, OY and OZ respectively, then write the value of sin2α + sin2β + sin2γ.
The sum of squares of direction cosines of a vector is 1.
Let the angles made by vector be α, β, γ. Then, we get
cos2α+cos2β+cos2γ=1
using cos2θ=1-sin2θ, we get
(1-sin2α) +(1-sin2β) +(1-sin2γ) =1
Or, sin2α+sin2β+sin2γ=2