Calculate the perimeter and area of the triangle in the picture.
We name the vertices of the triangle as A, B and C. We draw a perpendicular from B on AC as BD.
In ΔABD,
⇒ ∠A + ∠ABD + ∠ADB = 180° (Sum of all angles of a triangle)
⇒ 60 + ∠ABD + 90 = 180°
⇒ ∠ABD + 150 = 180°
⇒ ∠ABD = 30°
⇒ AD = AB cos60°
⇒ AD = 4×(1/2) = 2cm …………………….(1)
⇒ BD = AB sin60°
⇒ BD = 4×(√3/2) = 2√3 cm ……………………(2)
∠B = ∠ABD + ∠CBD
⇒ 75 = 30 + ∠CBD
⇒ 45 = ∠CBD
In Δ BCD,
∠BCD = ∠CBD = 45°
CD = BD ( Sides opposite to equal angles are equal)
⇒ CD = 2√3 cm (From eq(2) ) ……………………(3)
BC = √2 BD ( ΔBCD is a right isosceles triangle)
⇒ BC = √2(2√3) = 2√6 …………………….(4)
AC = AD + DC
⇒ AC = (2 + 2√3) cm
Perimeter = AB + BC + CA
⇒ Perimeter = 4 + 2√6 + (2 + 2√3)
⇒ Perimeter = 6 + 2√6 + 2√3
Area =
⇒ Area =
⇒ Area =
⇒ Area = (2 + 2√3)(√3)
⇒ Area = (6 + 2√3) cm2