Calculate the perimeter and area of the triangle in the picture.



We name the vertices of the triangle as A, B and C. We draw a perpendicular from B on AC as BD.


In ΔABD,


A + ABD + ADB = 180° (Sum of all angles of a triangle)


60 + ABD + 90 = 180°


ABD + 150 = 180°


ABD = 30°



AD = AB cos60°


AD = 4×(1/2) = 2cm …………………….(1)



BD = AB sin60°


BD = 4×(√3/2) = 2√3 cm ……………………(2)


B = ABD + CBD


75 = 30 + CBD


45 = CBD


In Δ BCD,


BCD = CBD = 45°


CD = BD ( Sides opposite to equal angles are equal)


CD = 2√3 cm (From eq(2) ) ……………………(3)


BC = √2 BD ( ΔBCD is a right isosceles triangle)


BC = √2(2√3) = 2√6 …………………….(4)


AC = AD + DC


AC = (2 + 2√3) cm


Perimeter = AB + BC + CA


Perimeter = 4 + 2√6 + (2 + 2√3)


Perimeter = 6 + 2√6 + 2√3


Area =


Area =


Area =


Area = (2 + 2√3)(√3)


Area = (6 + 2√3) cm2


1
1