Prove that

cot 4x (sin 5x + sin 3x) = cot x (sin 5x – sin 3x)



L.H.S


cot 4x (sin 5x + sin3x)


= cot 4x (2)


= cot 4x (2 sin4x cosx)


= (2 sin4x cosx)


= 2cos4xcosx


R.H.S


cot x (sin 5x - sin3x)


= cot x (2)


= cot x (2 cos4x sinx)


= (2 cos4x sinx)


= 2cos4xcosx


L.H.S=R.H.S


Hence, proved.


Using the formula,


sinA + sinB = 2sin cos


sinA - sinB = 2cos sin


1
1