In each of the following differential equation show that it is homogeneous and solve it.
(x2 - y2)dx + 2xydy = 0
(x2 - y2)dx + 2xydy = 0
![]()
![]()
⇒ the given differential equation is a homogenous equation.
The solution of the given differential equation is :
Put y = vx
![]()
![]()
![]()
![]()
![]()
![]()
![]()
Integrating both the sides we get:
![]()
![]()
Resubstituting the value of y = vx we get
![]()
![]()
![]()
Ans: x2 + y2 = cx