P is any point inside ABC let’s prove that,
AB+BC+AC<2(AP+BP+CP)
From the above figure,
In Δ PAB,
PA + PB > AB ……… (i)
Similarly in Δ PBC
PB + PC > BC ……… (ii)
Also in Δ PAC,
PA + PC > AC …….. (iii)
Now let us add the equations (i), (ii) and (iii)
AP + BP + BP + CP + AP + CP > AB + BC + AC
2AP+ 2BP + 2CP > AB + BC + AC
2 (AP + BP + CP) > AB + BC + AC.
It can be written in other way as follows:
AB + BC + AC < 2 (AP + BP + CP)
Hence Proved