The bisectors of exterior angles at B and C of Δ ABC meet at O, if ∠A= x°, then ∠BOC =
∠OBC = 180o - ∠B - (180o - ∠B)
∠OBC = 90o - ∠B
And,
∠OCB = 180o - ∠C - (180o - ∠C)
∠OCB = 90o - ∠C
In
∠BOC + ∠OCB + ∠OBC = 180o
∠BOC + 90o - ∠C + 90o -
∠B = 180o
∠BOC = (∠B + ∠C)
∠BOC = (180o - ∠A) [From
]
∠BOC = 90o - ∠A
∠BOC = 90o -