In ,
is obtuse,
and
. Prove that:
(i)
(ii)
⊿APB~⊿AQC [By AA similarity]
AP/AQ=AQ/AB {Corresponding part of similar triangle are proportional}
(II) APxAC=AQxAB ………….(i)
In ⊿BPC
BC2=BP2+PC2
BC2=AB2-AP2+(AP+AC)2
BC2=AB2-AP2+AP2+AC2+2APxAC
BC2=AB2+AC2+2APxAC ……..(ii)
In ⊿BQC
BC2=CQ2+BQ2
BC2=AC2-AQ2+(AB+AQ)2
BC2=AC2-AQ2+AB2 +2ABxAQ
BC2=AC2 +AB2+AQ2+2ABxAQ ………….(iii)
Adding equ. (ii)and(iii)
2BC2=2AC2+2AB2+2APxAC+2ABxAQ
2BC2=2AC[AC+AP]+AB[AB+AQ]
2BC2=2ACxPC+2ABxBQ
BC2=ACxPC+ABxBQ