In an equilateral,
, prove that
.
We have ⊿ ABC is an equilateral triangle and AD⊥BC
In ⊿ ADB⊿ ADC
∠ADB=∠ADC=90°
AB=AC (Given)
AD=AD (Common)
⊿ ADB≅⊿ ADC (By RHS condition)
∴ BD=CD=BC/2 ……. (i)
In ⊿ ABD
BC2=AD2+BD2
BC2=AD2+BD2 [Given AB=BC]
(2BD)2= AD2+BD2 [From (i)]
4BD2-BD2=AD2
AD2=3BD2