Find the missing frequencies in the following frequency distribution if it is known that the mean of the distribution 50.
x: 10 | 30 | 50 | 70 | 90 |
y: 17 | f1 | 32 | f2 | 19 |
X | y | yx |
10 | 17 | 170 |
30 | f1 | 30f1 |
50 | 32 | 1600 |
70 | f2 | 70f2 |
90 | 19 | 1710 |
N = 120 | ∑yx = 30f1 + 70f2 + 3480 |
Given, mean = 50
= 50
= 50
30f1 + 70f2 + 3480 = 50 * 120
30f1 + 70f2 + 3480 = 6000 (i)
Also, ∑y = 120
17 + f1 + 32 + f2 + 19 = 120
f1 + f2 = 52
f1 = 52 – f2
Substituting value of f1 in (i), we get
30 (52 – f2) + 70f2 + 3480 = 6000
40f2 = 960
f2 = 24
Hence, f1 = 52 – 24 = 28
Therefore, f1 = 28 and f2 = 24