If the roots of the equations
and
are simultaneously real, then prove that b2 = ac.
For a quadratic equation, ax2 + bx + c = 0,
D = b2 – 4ac
If D ≥ 0, roots are real
⇒ 4b2 – 4ac ≥ 0
⇒ b2 ≥ ac ------ (1)
⇒ 4ac – 4b2 ≥ 0
⇒ b2 ≤ ac ----- (2)
For both (1) and (2) to be true
⇒ b2 = ac