If the roots of the equation
are equal, prove that either a = 0 or a3 + b3 + c3 = 3abc.
For a quadratic equation, ax2 + bx + c = 0,
D = b2 – 4ac
If D = 0, roots are equal
Given, roots of
are equal.
∴ D = 0
⇒ 4(a2 – bc)2 – 4(c2 – ab)(b2 – ac) = 0
⇒ a4 + b2c2 – 2a2bc – b2c2 – a2bc + ab3 + ac3 = 0
⇒ a(a3 + b3 + c3 – 3abc) = 0
⇒ a = 0 or a3 + b3 + c3 = 3abc