Find the sum of the following arithmetic progressions:
(i)to 10 terms
(ii)to 12 terms
(iii)to 25 terms
(iv)to 12 terms
(v)to 22 terms
(vi)to n terms
(vii)to n terms
(viii)to 36 terms
(i)to 10 terms
Sn = [2a + (n – 1) d]
S10 = [100 + 9(-4)]
= 5 [100 – 36]
= 5(64) = 320
Sn = [2a + (n – 1) d]
= [2 + (12 – 1) 2]
= 6 (2 + 22)
= 144
Sn = [2a + (n – 1) d]
= [2 (3) + 24(
)]
= [6 + 36]
= 525
Sn = [2a + (n – 1) d]
= [82 - 55]
= 6 [27] = 162
Sn = [2a + (n – 1) d]
= [2(a + b) + (21) (-2b)]
= 11 [2a + 2b – 42b]
= 11 [2a – 40b]
= 22a – 440b
Sn = [2a + (n – 1) d]
= [2(x – y)2 + (n – 1) (2xy)]
= (2) [(x – y)2 + (n – 1) xy]
= n [(x – y)2 + (n – 1) xy]
Sn = [2a + (n – 1) d]
= [2(
) + (n – 1) xy]
= {2(x – y) + (n – 1) (2x – y)}
= {n (2x – y) – y}
Sn = [2a + (n – 1) d]
= [-52 + (35) 2]
= 18 [-52 + 70]
= 18 [18] = 324