Find the sum :
(i)
(ii)
(iii)
(iv)
(v)
(vi)
(vii)
(viii)
(i)
a = 2, d = 4 – 2 = 2, l = 200
n = + 1
= + 1 = 100
S100= [2(2) + 99(2)]
= 100 [101] = 10100
a = 3, d = 11 – 3 = 8, l = 803
Sn= + 1 =
+ 1
= 101
S101= [2(3) + 100(8)]
= 101 (403) = 40703
a = -5, d = -8 + 5 = -3, l = -230
n = + 1
= = 76
Sn= 38(5) [-2 – 45]
= 190 (-47) = -8930
a = 1, d = 3 – 1 = 2, l = 199
n = + 1
= 100
S100= [2(1) + 99(2)]
= 100 (100) = 10000
a = 7, d = - 7 =
Last term, an = 84
an = a + (n – 1)d
84 = 7 + (n – 1)
84 =
84 * 2 = 7 + 7n
168 = 7 + 7n
7n = 168 – 7
7n = 161
n = 23
Sum of nth term, Sn = [2a + (n – 1)d]
S23 = [2(7) + (23 – 1)
]
= [14 + 22 *
]
= [14 + 77]
= * 91 =
Hence, sum of given A.P. is
a = 34, d = 32 – 34 = -2
Last term, an = 10
an = a + (n – 1)d
10 = 34 + (n – 1) (-2)
10 = 34 – 2n + 2
2n = 34 – 10 + 2
2n = 26
n = 13
Sum of n terms,
Sn = [2a + (n – 1) d]
S13 = [2(34) + (13 – 1) (-2)]
= [68 + 12(-2)]
= [68 – 24]
= * 44 = 286
Hence, Sum of given A.P. is 286
a = 25, d = 3
Last term, an = 100
An = a + (n -1) d
100 = 25 (n – 1)3
75 = 3n – 3
78 = 3n
n = 26
Sum of n terms, Sn = [2a + (n – 1) d]
= [2(25) + (26 – 1) 3]
= 13 [50 + 25 * 3]
= 13 * 125 = 1625
Hence, Sum of given A.P. is 1625
a = 18, d = - 18 =
Last term, an =
an = a+ (n – 1)d
= 18 + (n – 1) (
)
-99 = 36 + 5 – 5n
-140 = -5n
n = 28
S28= [a + l]
= 14 (18 - )
= 7 (36 – 99)
= 7 (-63) = -441