In a parallelogram ABCD, the diagonals bisect each other at O. If ABC =30°, BDC= 10° and CAB =70°. Find:

DAB, ADC, BCD, AOD, DOC, BOC, AOB, ACD, CAB, ADB, ACB, DBC, and DBA.




ABC = ADC = 30° [Measure of opposite angles is equal in a parallelogram]


BDC = 10°………….. given


BDA = 30° - 10° = 20°


DAB = 180° - 30° = 150°


BCD = DAB = 150° [Measure of opposite angles is equal in a parallelogram]


DBA = BDC = 10° [Alternate interior angles are equal]


In ΔDOC


BDC + ACD + DOC = 180° [Sum of all angles og a triangle is 180°]


10° + 70° + DOC = 180°


DOC = 180°- 80°


DOC = 100°


DOC = AOB = 100° [Vertically opposite angles are equal]


DOC + AOD = 180° [Linear pair]


100° + AOD = 180°


AOD = 180°- 100°


AOD = 80°


AOD = BOC = 80° [Vertically opposite angles are equal]


ABC + BCD = 180° [In a parallelogram sum of adjacent angles is 180°]


30° + ACB + ACD = 180°


30° + ACB + 70° = 180°


ACB = 180° - 100°


ACB = 80°


ACB = ACB = 80° [Alternate interior angles are equal]


19
1