Diagonals AC and BD of a quadrilateral ABCD intersect each other at P. Show that:
ar(Δ APB) × ar(Δ CPD) = ar(Δ APD) × ar(Δ BPC).
Construction: Draw BQ perpendicular to AC
And,
DR perpendicular to AC
Proof: We have,
L.H.S = Area (ΔAPB) * Area (ΔCPD)
= (AP * BQ) *
(PC * DR)
= ( * PC * BQ) * (
* AP * DR)
= Area (ΔBPC) * Area (ΔAPD)
= R.H.S
Therefore,
L.H.S = R.H.S
Hence, proved