In the given figure, and
are straight lines through the center
of a circle. If
and
find (i)
(ii)
(i)
In triangle CDE,
∠CDE + ∠CED + ∠DCE = 180°[Sum of angles of triangle]
⇒ 40° + 90° + ∠DCE = 180°
⇒ 130° + ∠DCE = 180°
⇒ ∠DCE = 50°
(ii)
∠AOC + ∠BOC = 180°[Because AOB is a straight line]
⇒ 80° + ∠BOC = 180°
⇒ ∠BOC = 100°
In triangle BOC,
∠OCB + ∠BOC + ∠OBC = 180°[Sum of angles of triangle]
⇒ 50° + 100° + ∠OBC = 180°[∠DCE = 50°]
⇒ 150° + ∠OBC = 180°
⇒ ∠OBC = 30°
∴ ∠ABC = ∠OBC = 30°