In the adjoining figure, chords and
of a circle with center
intersect at right angles at
If
calculate
Join OB,
∴ OA = OB [Radius]
∴ ∠OAB = ∠OBA = 25°
In triangle AOB,
∠AOB + ∠OAB + ∠OBA = 180°[Sum of angles of triangle]
⇒ ∠AOB + 25° + 25° = 180°
⇒ ∠AOB + 50° = 180°
⇒ ∠AOB = 130°
Now,
∠ACB = (1/2) ∠AOB
⇒ ∠ACB = (1/2) 130°
⇒ ∠ACB = 65°
In triangle BEC,
∠EBC + ∠ECB + ∠BEC = 180°[Sum of angles of triangle]
⇒ ∠EBC + 65° + 90° = 180°
⇒ ∠EBC + 155° = 180°
⇒ ∠EBC = 25°