In the adjoining, there coplanar lines AB, CD and EF intersect at a point O. Find the value of x. Hence, find,
and
.
X=18,=36°,
=90°,
=54°
Given coplanar lines AB, CD and EF intersect at a point O.
Therefore, ∠AOD = ∠BOC ________________________ (i)
∠BOF = ∠AOE ________________________ (ii)
∠COE = ∠DOF ________________________ (iii)
∠BOC = 2x from equation (i)
∠AOE = 3x from equation (ii)
∠DOF = 5x from equation (iii)
∠AOD + ∠DOF + ∠BOF + ∠BOC + ∠COE + ∠AOE = 360°
⇒ 2x + 5x + 3x + 2x + 5x + 3x = 360°
⇒ 20x = 360°
⇒ x = 18°
∠AOD = 2x = 2× 18° = 36°
∠COE = 3x = 3× 18° = 54°
∠AOE = 4x = 4× 18° = 72°