Find the product:

(x + y – z)(x2 + y2 + z2 – xy + yz + zx)


We have,


a3 (b – c)3 + b3 (c – a)3 + c3 (a – b)3


We know that,


a3 + b3 + c3 – 3abc = (a + b + c) (a2 + b2 + c2 – ab – bc – ca)]


Also,


If, (x + y + z) = 0


Then (x3 + y3 + z3) = 3xyz


Using this, we get


= [x + y + (-z)] [(x)2 + (y)2 + (-z)2 – (x) (y) – (y) (-z) – (-z) (x)]


= x3 + y3 – z3 + 3xyz


15
1