Find the product:

(x –2y – 3)(x2 + 4y2 + 2xy – 3x + 6y + 9)


We have,


a3 (b – c)3 + b3 (c – a)3 + c3 (a – b)3


We know that,


a3 + b3 + c3 – 3abc = (a + b + c) (a2 + b2 + c2 – ab – bc – ca)]


Also,


If, (x + y + z) = 0


Then (x3 + y3 + z3) = 3xyz


Using this, we get


= [x + (-2y) + 3] [(x)2 + (-2y)2 + (3) – (x) (-2y) – (-2y) (3) – (3) (x)]


= (a + b + c) (a2 + b2 + c2 – ab – bc – ca)


= a# + b3 + c3 – 3abc


Where,


x = a, b = -2y and c = 3


(x – 2y + 3) (x2 + 4y2 + 2xy – 3x + 6y + 9)


= (x)3 + (-2y)3 + (3)3 – 3 (x) (-2y) (3)


= x3 – 8y3 + 27 + 18xy


16
1