If find the value of


We have,


a3 (b – c)3 + b3 (c – a)3 + c3 (a – b)3


We know that,


a3 + b3 + c3 – 3abc = (a + b + c) (a2 + b2 + c2 – ab – bc – ca)]


Also,


If, (x + y + z) = 0


Then (x3 + y3 + z3) = 3xyz


Given, x = 2y + 6


Or, x – 2y – 6 = 0


We have,


(x3 – 8y3 – 36xy – 216)


= (x3 – 8y3 – 216 – 36xy)


= (x)3 + (-2y)3 + (-6)3 – 3 (x) (-2y) (-6)


= (x – 2y – 6) [(x)2 + (-2y)2 + (-6)2 – (x) (-2y) – (-2y) (-6) – (-6) (x)]


= (x – 2y – 6) (x2 + 4y2 + 36 + 2xy – 12y + 8x)


= 0 (x2 + 4y2 + 36 + 2xy – 12y + 6x)


= 0


19
1