Find the values of the unknowns x and y in the following diagrams:
(i) From the given figure, we have
y + 120o = 180o (Linear pair)
Therefore,
y = 180o – 120o
y = 60o
x + y + 50o = 180o (angle sum property of triangle)
x + 110o = 180o
x = 180o – 110o
x = 70o
Hence,
The value of x = 70o
And,
Value of y = 60o
(ii) From the given figure, we have
y = 80o (Vertically opposite angle)
y + x + 50o = 180o (angle sum property of triangle)
80o + x + 50o = 180o
130o + x = 180o
x = 180o – 130o
x = 50o
Hence,
The value of x = 50o
And,
The value of y = 80o
(iii) From the given figure,
y + 50o + 60o = 180o (angle sum property of triangle)
y + 110o = 180o
y = 180o – 110o
y = 70o
x and y are on a straight line and forming a linear pair
Therefore,
x + y = 180o
x + 70o = 180o
x = 180o – 70o
x = 110o
Hence,
The value of x = 110o
And,
Value of y = 70o
(iv) From the given figure, we have
x = 60o (Vertically opposite angle)
30o + x + y = 180o (angle sum property of triangle)
30o + 60o + y = 180o
90o + y = 180o
y = 180o – 90o
y = 90o
Hence,
The value of x = 60o
And,
Value of y = 90o
(v) From the given figure, we have
y = 90o (Vertically opposite angle)
x + x + y = 180o (angle sum property of triangle)
2x + y = 180o
2x + 90o = 180o
2x = 180o – 90o
2x = 90o
x =
x = 45o
Hence, The value of x = 45o
And,
The valuue of y = 90o
(vi) From the given figure, we have
y = x (Vertically opposite angles)
a = x (Vertically opposite angles)
b = x (Vertically opposite angles)
a + b + x = 180o (angle sum property of triangle)
x + x + x = 180o
3x = 180o
x =
x = 60o
y = x (Vertically opposite angle)
Hence,
The value of y = x = 60o