If tanθ = 1/√7 , show that


We have, tanθ = k/(k√7) = BC/AC (For some value of k)



By Pythagoras theorem, (hypotenuse)2 = (perpendicular)2 + (base)2


AB2 = BC2 + AC2


= AB2 = (k)2 + (k√7)2


= AB2 = k2 + 7k2


= 8k2 = (2k√2)2


AB = 2k√2


cosecθ = AB/BC = 2k√2


secθ = AB/AC = =


consider the LHS,


LHS =


=


=


= 48/64


= 3/4


= RHS


HENCE PROVED


11
1