If sinθ = a/b, show that 
Consider LHS,
LHS = secθ + tanθ = ![]()
=
(1)
We have, sinθ = (ak)/(bk) = BC/AB (For some value of k)

By Pythagoras theorem, (hypotenuse)2 = (perpendicular)2 + (base)2
∴AB2 = BC2 + AC2
= (bk)2 = (ak)2 + AC2
= AC2 = b2k2 - a2k2
→ AC = ![]()
∴ cosθ = AC/AB =
= ![]()
∴ from(1)
LHS =
= 
= ![]()
= ![]()
= RHS
HENCE PROVED