Verify each of the following:
(i) sin 60° cos 30° — cos 60° sin 30° = sin 30°
(ii) cos 60° cos 30° + sin 60° sin 30° = cos 30°
(iii) 2 sin 30° cos 30° = sin 60°
(iv) 2 sin 45° cos 45° = sin 90°
(i) Consider L.H.S. = sin 60° cos 30° — cos 60° sin 30°
= (√3/2) × (√3/2) – (1/2)(1/2)
= (3/4) – (1/4)
= 2/4
=1/2
Consider R.H.S. = sin 30° = 1/2
L.H.S. = R.H.S.
Hence, verified.
(ii) Consider L.H.S. = cos 60° cos 30° + sin 60° sin 30°
= (1/2) × (√3/2) + (√3/2)(1/2)
= (√3/4) + (√3/4)
= √3/2 = cos 30° = R.H.S.
∴ L.H.S. = R.H.S.
Hence, verified.
(iii) Consider L.H.S. = 2 sin 30° cos 30°
= 2 × (1/2) × (√3/2)
= √3/2 = sin 60° = R.H.S.
∴ L.H.S. = R.H.S.
Hence, verified.
(iv) Consider L.H.S. = 2 sin 45° cos 45°
= 2 × (1/√2) × (1/√2)
= (2 × 1/2)
= 1 = sin 90° = R.H.S.
∴ L.H.S. = R.H.S.
Hence, verified.