If sin (A + B) =1 and cos (A - B) = 1, 0° ≤ (A + B) ≤ 90° and A > B then find A and B.
Given: (i) sin (A + B) = 1
(ii) cos (A - B) = 1
Since, sin (A + B) = 1
⇒ sin (A + B) = sin 90° (∵ 0° ≤ (A + B) ≤ 90°, sin 90° = 1)
⇒ A + B = 90° .......................................... (1)
Also, cos (A - B) = 1
⇒ cos (A - B) = cos 0° (∵ 0° ≤ (A + B) ≤ 90°, cos 0° = 1)
⇒ A - B = 0° .......................................... (2)
From equation (2), we get A = B
Putting this value in equation (1), we get, 2A = 90° ⇒ A = 45°
∴ B = A = 45°
∴ A =
B = 45°