The sum of three numbers in AP is 3 and their product is - 35. Find the numbers.
Let the numbers be (a - d), a, (a + d).
Now, sum of the numbers = 15
∴ (a - d) + a + (a + d) = 3
⇒ 3a = 3
⇒ a = 1
Now, product of the numbers = - 35
⇒ (a - d) × a × (a + d) = - 35
⇒ a3 - ad2 = - 35
Put the value of a, we get,
1 - d2 = - 35
⇒ d2 = 35 + 1 = 36
d2 = 36
d = 6
∴ If d = 6, then the numbers are - 5, 1, 7.
If d = - 6, then the numbers are 7, 1, - 5.