In an AP, it is given that, S5 + S7 =167 and S10= 235, then find the AP, where Sn denotes the sum of its first n terms.
Let the first term be a.
Let Common difference be d.
Given: S5 + S7 =167
S10= 235
Now, Sum of n terms of an arithmetic series is given by:
Sn = [2a + (n - 1)d]
So, consider
S5 + S7 =167
⇒ (5/2) [2a + (5 - 1)d] + (7/2) [2a + (7 - 1)d] = 167
⇒ (5/2) [2a + 4d] + (7/2) [2a + 6d] = 167
⇒ 5 × [a + 2d] + 7 × [a + 3d] = 167
⇒ 5a + 10d + 7a + 21d = 167
⇒ 12a + 31d = 167 …………….. (1)
Now, consider S10= 235
⇒ (10/2) [2a + (10 - 1)d] = 235
⇒ 5 × [2a + 9d] = 235
⇒ 10a + 45d = 235
⇒ 2a + 9d = 47 ………. (2)
Subtracting equation (1) from 6 times of equation (2), we get,
⇒ 23d = 115
⇒ d = 5
So, from equation (2), we get,
a = 1/2 (47 - 9d)
⇒ a = 1/2 (47 - 45)
⇒ a = 1/2 (2)
⇒ a = 1
Therefore the AP is a, a + d, a + 2d, a + 3d,…
i.e. 1, 6, 11, 16, ….