The sum of first 10 terms of an AP is – 150 and the sum of its next 10 terms is – 550. Find the AP.
Let a be the first term and d be the common difference.
Given: Sum of first 10 terms = S10 = - 150
Sum of next 10 terms = - 550
i.e. S20 - S10 = - 550
Consider S10 = - 150
⇒ (10/2)[2a + (10 - 1)d] = - 150
⇒ 5 × [2a + 9d] = - 150
⇒ [2a + 9d] = - 30 ………………….(1)
Now, consider S20 - S10 = - 550
⇒ (20/2)[2a + (20 - 1)d] - (10/2)[2a + (10 - 1)d] = - 550
⇒ 10 × [2a + 19d] - 5[2a + 9d] = - 550
⇒ 10a + 145d = - 550 …………………..(2)
On subtracting equation (2) from 5 times of equation (2), we get,
- 100d = 400
⇒ d = - 4
∴ a = 1/2 (-30 - 9d)
⇒ a = 1/2 (-30 + 36)
⇒ a = 3
Therefore the AP is 3, - 1, - 5, - 9,….