An electron gun with its collector at a potential of 100 V fires out electrons in a spherical bulb containing hydrogen gas at low pressure (∼10–2 mm of Hg). A magnetic field of 2.83 × 10–4 T curves the path of the electrons in a circular orbit of radius 12.0 cm. (The path can be viewed because the gas ions in the path focus the beam by attracting electrons, and emitting light by electron capture; this method is known as the ‘fine beam tube’ method.) Determine e/m from the data.
Given:
Potential at collector, V = 100V
Magnetic field strength, B = 2.83 × 10-4 T
Radius of orbit traced by electron, r = 12.0 cm
Let specific charge (i.e. e/m) = K
Kinetic energy of an electron is given by:
KE =
= eV
→ v =
…(1)
Where,
M = mass of electron
v = velocity of electron
e = charge of electron
V = potential difference (accelerating potential)
We also know that the bending is caused by the magnetic field,
So we can write,
Magnetic force = centrifugal force
e × v × B = ![]()
→ e × B = ![]()
→ v =
…(2)
Where,
e = Charge on electron
v = velocity of particle
B = magnetic field strength
m = mass of electron
r = radius of trajectory
By equating (1) and (2) we can write,
.![]()
→![]()
By putting the values in above equation we get,
![]()
![]()
Hence the specific charge is 1.7 × 10-11 C Kg-1.