If (sin θ + cos θ) = √2 cos θ, show that cot θ = (√2 + 1).
Given: (sin θ + cos θ) = √2 cos θ
Divide both sides by sin θ:
(sin θ + cos θ)/sin θ = √2 cos θ/sin θ
⇒ 1 + cot θ = √2 cot θ
⇒ (√2 – 1)cot θ = 1
⇒ cot θ =
⇒ cot θ =
⇒ cot θ =
⇒ cot θ = √2 + 1