If cosec θ + cot θ = p, prove that .


Given: cosec θ + cot θ = p


p2 – 1 = (cosec θ + cot θ)2 – 1


= cosec2 θ + cot2 θ + 2 cosec θ cot θ – 1


= cosec2 θ – 1 + cot2 θ + 2 cosec θ cot θ


= cot2 θ + cot2 θ + 2 cosec θ cot θ


= 2 cot θ (cot θ + cosec θ)


Also, p2 + 1 = (cosec θ + cot θ)2 + 1


= cosec2 θ + cot2 θ + 2 cosec θ cot θ + 1


= cosec2 θ + 1 + cot2 θ + 2 cosec θ cot θ


= cosec2 θ + cosec2 θ + 2 cosec θ cot θ


= 2 cosec θ (cosec θ + cot θ)


Now, consider L.H.S. =


=


= cot θ/cosec θ


= cos θ


= R.H.S.


Hence, proved.


11
1