Let f, g and h be functions from R to R. Show that
(f + g)oh = foh + goh
(f . g)oh = (foh) . (goh)
(i) (f + g)oh = foh + goh
Let us consider ((f + g)oh)(x) = (f + g)(h(x))
= f(h(x)) + g(h(x))
= (foh)(x) + (goh)(x)
= {(fog) + (goh)}(x)
Then, ((f + g)oh)(x) = {(foh) +(goh)}(x) ∀ x ϵ R
Therefore, (f + g)oh = foh + goh.
(ii) (f.g)oh = (foh).(goh)
Let us consider ((f.g)oh)(x) = (f.g)(h(x))
= f(h(x)).g(h(x))
= f (h(x)).g(h(x))
= (fog)(x).(goh)(x)
= {(fog).(goh)}(x)
Then, ((f.g)oh)(x) = {(fog).(goh)}(x) ∀ x ϵ R
Therefore, (f.g)oh = (fog).(goh)