Differentiate w.r.t. x the function
, for x > 3
Let y = ![]()
And let
= u &
= v
∴ y = u + v
Differentiating both sides w.r.t. x we get
………..(I)
Now,
![]()
Taking logarithm both sides
![]()
⇒ ![]()
Differentiating w.r.t. x, we get
![]()
⇒ ![]()
⇒
……………(II)
Also,
![]()
Taking logarithm both sides
![]()
⇒ ![]()
Differentiating both sides w.r.t. x
![]()
⇒ ![]()
⇒ ![]()
⇒
……………………….(II)
Substituting (II) and (III) in (I)
∴ ![]()