If cos y = x cos (a + y), with cos a ≠ ± 1, prove that 
Given, cos y = x cos (a + y)
Differentiating both sides with respect to x
![]()
⇒ ![]()
⇒ ![]()
⇒
…………..(I)
Since, cos y = x cos (a + y) ⇒ x = cos y/cos (a + y)
Substituting the value of x in (I)
![]()
⇒ ![]()
⇒ ![]()
⇒ ![]()
⇒ ![]()
Hence, proved