Prove that where p is any scalar.
Let Δ =
Applying Elementary Row Transformations
R2→ R2 – R1 and R3→ R3 – R1
Δ =
Taking (y – x) and (z – x) common from R2 and R3 respectively
Δ = (y – x) (z – x)
Applying R3→ R3 – R2
Δ = (y – x) (z – x)
Taking (z – y) common from R3
Δ = (y – x) (z – x) (z – y)
Expanding along R3, we have
Δ = (x – y) (y – z) (z – x) [0 – 1 {x × p(y2 + x2 + xy) – 1 × (1 + px3)} + p (x + y + z) {x × (y + x) – 1 × x2}
Δ = (x – y) (y – z) (z – x) (-px3 – pxy2 – px2y + 1 + px3 + px2y + pxy2 + pxyz)
Δ = (x – y) (y – z) (z – x) (1 + pxyz)
Hence, the given result is proved.