The inside perimeter of a running track shown in the figure is 400 m. The length of each of the straight portions is 90 m, and the ends are semicircles. If the track is 14 m wide everywhere, find the area of the track. Also, find the length of the outer boundary of the track.
Consider the figure as a combination of two semicircles on the ends of the rectangle
Let the length of rectangle be ‘L’ m and breadth be ‘B’ cm
Given L = 90 m, W = 14 m
Perimeter of running track = 400 m
Perimeter of inside of running track = 2L + Arc of two semicircles → eqn1
Arc length of a semicircle = πr where r = radius
⇒ 400 = (2×90) + (2×πr) (putting values in eqn1)
⇒ 400 = 180 + 2πr
⇒ 400 – 180 = 2πr
⇒ 220 = 2πr
∴ r = 35 m
Area of inner of running track = Area of rectangle + 2×area of semicircles → eqn2
Area of rectangle = L×B
Here B = 2r
B = 70 m
⇒ Area of inner rectangle = 90×70
∴ Area of inner rectangle = 6300 m2→ eqn3
⇒ Area of inner semicircles = 1225π
⇒ Area of inner semicircle = 175×22
∴ Area of inner semicircle = 3850 m2→ eqn4
Area of inner of running track = 6300 + 3850 (from3&4)
∴ Area of inner of running track = 10150 m2
Now radius of semicircles of outer of the running track = R = r + W
⇒ R = 35 + 14
∴ R = 49 m
⇒ Area of outer semicircles = 2401π
⇒ Area of outer semicircles = 343×22
∴ Area of outer semicircle = 7546 m2→ eqn5
Breadth of outer running track = B’ = 2R
⇒ B’ = 2×49
∴ B’ = 98 m
Area of outer rectangle = L×B’
⇒ Area of outer rectangle = 90×98
∴ Area of outer rectangle = 8820 m2→ eqn6
Area of entire ground = 8820 + 7546 (from 5&6)
∴ Area of entire ground = 16366 m2
Area of running track = Area of entire ground – Area of inner ground
⇒ Area of running track = 16366 – 10150
∴ Area of running track = 6216 m2
Perimeter of outer boundary = 2L + Arc of outer semicircles
Arc length of an outer semicircle = πR, where R = outer radius
⇒ Perimeter of outer boundary = 180 + (2×22×7)
⇒ Perimeter of outer boundary = 180 + 308
∴ Perimeter of outer boundary = 488 m
Area of running track is 6216 m2 and perimeter of outer boundary is 488 m.