The difference between the sides at right angles in a right-angled triangle is 7 cm. The area of the triangle is 60 cm2. Finds its perimeter.
Let the sides at right angles be a and b
And, the third side be c.
Given: a-b = 7 cm
Area of triangle = 60 cm2
Now, since a-b = 7
⇒ a = b + 7
Now we know that,
Area of triangle = 1/2 × base × height
⇒ 60 = 1/2 × b × (b + 7)
⇒ 60 × 2 = b2 + 7b
⇒ b2 + 7b = 120
⇒ b2 + 7b – 120 = 0
⇒ b2 + 15b - 8b – 120 = 0
⇒ b(b + 15) - 8(b + 15) = 0
⇒ (b + 15)(b-8) = 0
This gives us two equations,
i. b – 8 = 0
⇒ b = 8
ii. b + 15 = 0
⇒ b = -15
Since, the side of the triangle cannot be negative
Therefore, b = 8 cm
⇒ a = (b + 7) cm
⇒ a = (8 + 7) cm
⇒ a = 15 cm
Now we know that,
Base2 + Perpendicular2 = Hypotenuse2
⇒ a2 + b2 = c2
⇒ 152 + 82 = c2
⇒ c2 = 225 + 64
⇒ c2 = 289
⇒ c = 17
Now,
Perimeter of triangle = a + b + c
⇒ Perimeter of triangle = 15 + 8 + 17
⇒ Perimeter of triangle = 40 cm