In ΔABC, D is the midpoint of BC and AE ⊥ BC. If AC > AB, show that
AB2 = AD2 — BC • DE + 1/4 BC2
In right-angled triangle AED, applying Pythagoras theorem,
AB2 = AE2 + BE2
⇒ AE2 = AB2 – BE2 ….(i)
In right-angled triangle AED, applying Pythagoras theorem,
AD2 = AE2 + ED2
⇒ AE2 = AD2 – ED2 ….(ii)
Therefore,
AB2 – BE2 = AD2 – ED2