In a ΔABC, AD is a median and AL ⊥ BC.
Prove that:
(a) AC2 = AD2 + BC • DL +
(b) AB2 = AD2 - BC • DL +
(c) AC2 + AB2 = 2AD2 +
(a) In right triangle ALC
Using Pythagoras theorem, we have
AC2 = AL2 + LC2
⇒ AC2 = AD2 − DL2 + (DL + DC) 2
….(1)
(b) In right triangle ALD
Using Pythagoras theorem, we have
AL2 = AD2 - LD2
Again, in ΔABL
Using Pythagoras theorem, we have
AB2 = AL2 + LB2
⇒ AB2 = AD2 –DL2 + LB2
⇒ AB2 = AD2–DL2 + (BD – DL)2
……(2)
(c) Adding (1) and (2)