In the figure, AD = BE, BC = DF and ∠ABC = ∠EDF. Prove that AC ïï EF and AC = EF.

    Since AD = BE
... AD + DB = BE + DB
        ⇒ AB = DE
Now in ΔABC and ΔEDF 
            AB = DE ...... (proved above)
            BC = DF ...... (given)
  and ∠ABC = ∠EDF ...... (given)
     ... ΔABC ≅ ΔEDF
        ... AC = EF ...... (c.p.c.t.)
  and ∠BAC = ∠DEF
but these are alternate interior angles of AC and EF with transversal AE 
... AC ïï EF
13
1